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Running coupling of 2-flavor QCD at zero and finite temperature
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Abstract. We present lattice studies of the running coupling in 2-flavor QCD. The coupling at zero
temperature (T = 0) is extracted from Wilson loops while the coupling at finite temperature (T �= 0) is
determined from Polyakov loop correlation functions.
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1 Running couplings

The QCD coupling plays an important role at zero tem-
perature and, in particular, at finite temperature in todays
discussion of possible signals for the quark–gluon plasma
formation in heavy ion experiments [1–3]. We calculate
running couplings from lattice studies of the Wilson loop
(T = 0) [4] and Polyakov loop correlation functions (T �= 0)
in 2-flavor QCD (Nf = 2) using an improved staggered
fermion action with quark mass m/T = 0.4 (correspond-
ing to ma = 0.1) [5]. Any further details on this study can
be found in [4,6, 7]. Similar studies in quenched QCD are
reported in [8–10]. First experiences with the running cou-
pling at finite temperature in 3-flavor QCD are reported
in [11].

1.1 Heavy quark potential at T = 0

For the determination of the heavy quark potential at zero
temperature, V (r), we have used the measurements of large
smeared Wilson loops given in [4] (Nf = 2 and ma =
0.1). To eliminate the divergent self-energy contributions
we matched these data for all β-values (different β-values
correspond to different values of the lattice spacing a) at
large distances to the bosonic string potential,

V (r) = − π
12

1
r

+ σr ≡ − 4
3

αstr

r
+ σr , (1)

where we already have separated the Casimir factor so that
αstr ≡ π/16. In Fig. 1a,b we show our results together with
the heavy quark potential from the string picture (dashed
line). One can see that the data are well described by (1) at
large distances, i.e. r

√
σ � 0.8, corresponding to r � 0.4 fm.

At these distances we see no major difference between the
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Fig. 1. a The heavy quark potential at T = 0 from [4] obtained
from 2-flavor QCD lattice simulations with quark masses ma =
0.1 for different values of the lattice coupling β. b shows an
enlargement of the short distance regime. The data are matched
to the bosonic string potential (dashed line) at large distances.
Included is also the fit to the Cornell form (solid line) given in (3)
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2-flavor QCD potential obtained from Wilson loops and
the quenched QCD potential which is well described by
the string model already for r � 0.4 fm [8,12]. In fact, we
also do not see any signal for string breaking in the zero
temperature QCD heavy quark potential. This is to some
extent due to the fact that the Wilson loop operator used
here for the calculation of the T = 0 potential has only
small overlap with states where string breaking occurs [13].
Moreover, the distances for which we analyze the data for
the QCD potential are all below r � 1.5 fm at which string
breaking is expected to set in at zero temperature.

1.2 The coupling at T = 0

Deviations from the string model and from the pure gauge
potential, however, are clearly expected to become appar-
ent in the 2-flavor QCD potential at small distances and
may already be seen from the short distance part in Fig. 1.
These deviations are expected to arise from an asymptotic
weakening of the QCD coupling, i.e. α = α(r), and also
is to some extent due to the effect of including dynami-
cal quarks (Nf �= 0), i.e. from leading order perturbation
theory one expects

α(r) � 1
8π

1
β0 log (1/(rΛQCD))

, (2)

with β0 = (33 − 2Nf )/(48π2) where Nf is the number of
flavors. The data in Fig. 1b show a slightly steeper slope
at distances below r

√
σ � 0.5 compared to the pure gauge

potential given in [8] indicating that the QCD coupling
gets stronger in the entire distance range analyzed here
when including dynamical quarks. To include the effect of
a stronger Coulombic part in the QCD potential we test
the Cornell parameterization,

V (r)√
σ

= − 4
3

α

r
√

σ
+ r

√
σ , (3)

with a free parameter α. From a best fit analysis of (3)
to the data ranging from 0.2 � r

√
σ � 2.6 we find α =

0.212(3). This already may indicate that the logarithmic
weakening of the coupling with decreasing distance will not
too strongly influence the properties of the QCD potential
at these distances, i.e. at r � 0.1 fm. However, the value of α
is moderately larger than αstr � 0.196 introduced above.
To compare the relative size of α in full QCD to α calculated
in the quenched theory we again have performed a best fit
analysis of the quenched zero temperature potential given
in [8] using the ansatz given in (3) and a similar distance
range. Here we find αquenched = 0.195(1) which is again
smaller than the value for the QCD coupling but quite
comparable to αstr.

When approaching the short distance perturbative
regime a Cornell ansatz will overestimate the value of the
coupling due to the perturbative logarithmic weakening of
the latter, αQCD = αQCD(r). To analyze the short distance
properties of the QCD potential and the coupling in more
detail, i.e. at r � 0.4 fm, and to firmly establish here the on-
set of its perturbative weakening with decreasing distance,
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Fig. 2. The short distance part of the running coupling αqq(r)
in 2-flavor QCD at zero temperature defined in (4) as function
of the distance r (in physical units). The symbols for the dif-
ferent β-values are chosen as indicated in Fig. 1a. The lines are
discussed in the text

it is customary to do so using non-perturbative definitions
of running couplings. Following recent discussions on the
running of the QCD coupling [8, 14, 15], it appears most
convenient to study the QCD force, i.e. dV (r)/dr, rather
than the QCD potential. In this case one defines the QCD
coupling in the so-called qq-scheme,

αqq(r) ≡ 3
4

r2 dV (r)
dr

. (4)

In this scheme any undetermined constant contribution
to the heavy quark potential cancels out. Moreover, the
large distance, non-perturbative confinement contribution
to αqq(r) is positive and allows for a smooth matching
of the perturbative short distance coupling to the non-
perturbative large distance confinement signal.

Our results for αqq(r) as a function of distance in phys-
ical units for 2-flavor QCD are summarized in Fig. 2. The
symbols for the different β-values are chosen as in Fig. 1a.
We again show in that figure the corresponding line for
the Cornell fit (solid line). At large distances, r � 0.4 fm,
the data clearly mimic the non-perturbative confinement
part of the QCD force, αqq(r) � 3r2σ/4. We also compare
our data to the recent high statistics calculation in pure
gauge theory (thick solid line). These data are available for
r � 0.1 fm and within the statistics of the QCD data no
significant differences could be identified between the QCD
and pure gauge data for r � 0.4 fm. At smaller distances
(r � 0.4 fm), however, the data show some enhancement
compared to the coupling in quenched QCD. The data be-
low 0.1 fm, moreover, fall below the large distance Cornell
fit. This may indicate the logarithmic weakening of the cou-
pling. At smaller distances than 0.1 fm we therefore expect
the QCD potential to be influenced by the weakening of the
coupling and αqq(r) will approach values clearly smaller
than α deduced from the Cornell ansatz. Unfortunately
we can, at present, not go to smaller distances to clearly
demonstrate this behavior with our data in 2-flavor QCD.
Moreover, at small distances cut-off effects may also influ-
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ence our analysis of the coupling and more detailed studies
are required here. In earlier studies of the coupling in pure
gauge theory [8,9,15] it has, however, been shown that the
perturbative logarithmic weakening becomes already im-
portant at distances smaller than 0.2 fm and contact with
perturbation theory could be established.

1.3 The running coupling at T �= 0

We extend here our studies of the coupling at zero temper-
ature to finite temperature below and above deconfinement
following the conceptual approach given in [9, 10]. In this
case the appropriate observable is the color singlet quark
anti-quark free energy and its derivative. We use the per-
turbative short and large distance relation from one gluon
exchange [16–18], i.e. in the limit rΛQCD � 1 zero tem-
perature perturbation theory suggests

F1(r, T ) � − 4
3

α(r)
r

, (5)

while high temperature perturbation theory, i.e. rT � 1
and T well above Tc, yields

F1(r, T ) � − 4
3

α(T )
r

e−mD(T )r . (6)

In both relations we have neglected any constant contri-
butions to the free energies which, in particular, at high
temperatures will dominate the large distance behavior of
the free energies. Moreover, we already anticipated here
the running of the couplings with the expected dominant
scales r and T in both limits. At finite temperature we
define the running coupling in analogy to T = 0 as,

αqq(r, T ) ≡ 3
4

r2 dF1(r, T )
dr

. (7)

With this definition any undetermined constant contribu-
tions to the free energies are eliminated and the coupling
defined here at finite temperature will recover the coupling
at zero temperature defined in (4) in the limit of small dis-
tances. Therefore αqq(r, T ) will show the (zero tempera-
ture) weakening in the short distance perturbative regime.
In the large distance limit, however, the coupling will be
dominated by (6) and will again be suppressed by color
screening, αqq(r, T ) ∼ exp(−mD(T )r), rT � 1. It thus
will exhibit a maximum at some intermediate distance.

Lattice results for αqq(r, T ) calculated in this way are
shown in Fig. 3 and are compared to the coupling at zero
temperature discussed already in Sect. 1.2. Here the thin
solid line corresponds to the coupling in the Cornell ansatz
given in (3). We again show in this figure the results from
SU(3)-lattice (thick line) and perturbative (dashed line)
calculations at zero temperature from [8, 15]. The strong
r-dependence of the running coupling near Tc observed
already in pure gauge theory [9, 10] is also visible in 2-
flavor QCD. Although our data for 2-flavor QCD do not
allow for a detailed quantitative analysis of the running
coupling at smaller distances, the qualitative behavior is
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Fig. 3. The running coupling in the qq-scheme defined in (7)
calculated from derivatives of the color singlet free energies with
respect to r at several temperatures as function of distance below
and above deconfinement. We also show the corresponding
coupling at zero temperature (solid line) from (3) and compare
the results again to the results in pure gauge theory (thick solid
and dashed lines) [8, 15]

in quite good agreement with the recent quenched results.
At large distances the running coupling shows a strong
temperature dependence which sets in at shorter distances
with increasing temperature. For small temperatures, T �
1.02Tc, the coupling αqq(r, T ) already coincides with αqq(r)
at distance r � 0.4 fm and clearly mimics here also
the confinement part of αqq(r). This is also apparent in
quenched QCD [9]. Remnants of the confinement part of
the QCD force may survive the deconfinement transition.
A clear separation of the different effects usually described
by the concepts of color screening (T � Tc) and effects
commonly described by the concept of string breaking (T �
Tc) is difficult to establish at temperatures in the close
vicinity of the confinement deconfinement cross over.

We also analyzed the temperature dependence of the
maximal value that αqq(r, T ) at fixed temperature exhibits
at a certain distance, rmax, i.e. we identify a temperature
dependent coupling, α̃qq(T ), defined as

α̃qq(T ) ≡ αqq(rmax, T ) . (8)

Values for α̃qq(T ) are also available in pure gauge theory [9]
at temperatures above deconfinement 1. Our results for
α̃qq(T ) in 2-flavor QCD and pure gauge theory are shown
in Fig. 4 as function of temperature, T/Tc. At temperatures
above deconfinement we cannot identify significant differ-
ences between the data from pure gauge and 2-flavor QCD2.
Only at temperatures quite close but above the phase tran-
sition small differences between full and quenched QCD
become visible in α̃qq(T ). Nonetheless, the value of α̃qq(T )
drops from about 0.5 at temperatures only moderately
larger than the transition temperature, T � 1.2Tc, to a

1 In pure gauge theory rmax and α̃qq(T ) would be infinite
below Tc.

2 Note, however, the change in temperature scale from Tc �
200 MeV in full to Tc � 270 MeV in quenched QCD.
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Fig. 4. The size of the maximum, α̃qq(T ), defined in (8),
as function of temperature in 2-flavor QCD (filled symbols)
and pure gauge theory (open symbols) from [9]. The lines are
explained in the text

value of about 0.3 at 2Tc. This change in α̃qq(T ) with tem-
perature calculated in 2-flavor QCD does not appear to be
too dramatic and can indeed be described by the 2-loop
perturbative coupling assuming vanishing quark masses.
Due to the ambiguity in setting the scale in perturbation
theory we performed a best fit analysis to fix this scale for
the entire temperature range, 1.2 � T/Tc � 2. We find
Tc/Λ = 0.43(1) with µ = 2πT . This is shown by the solid
line (fit) in Fig. 4 including the error band (dotted lines).

At temperatures in the vicinity and below the phase
transition temperature, T � 1.2Tc, the behavior of α̃qq(T )
is, however, quite different from the perturbative logarith-
mic changewith temperature.The values for α̃qq(T ) rapidly
grow here with decreasing temperature and approach non-
perturbative large values. This again shows that αqq(r, T )
mimics the confinement part of the zero temperature force
still at relatively large distances and that this behavior sets
in already at temperatures close but above deconfinement.

2 Summary

Our analysis of the heavy quark potential and coupling
in 2-flavor QCD at T = 0 shows that deviations from the
string picture set in at r � 0.4 fm. At distances smaller
than 0.3 fm also deviations from V (r) obtained from Wil-
son loops in quenched QCD [8] become apparent. The log-
arithmic running of the coupling will become a dominant
feature in V (r) only for r � 0.1 fm. We demonstrated that
the QCD coupling at finite temperature indeed runs with
distance and coincides with the zero temperature running
coupling at sufficiently small distances. Remnants of the

confinement part of the QCD force may survive the decon-
finement transition and could play an important role for
the discussion of non-perturbative aspects of quark anti-
quark interactions at temperatures moderately above Tc. A
clear separation of the different effects usually described by
color screening (T � Tc) and effects commonly attributed
to string breaking (T � Tc) is difficult to establish at tem-
peratures in the close vicinity of the confinement decon-
finement cross over. Similar findings were recently reported
in quenched QCD [9,19]. Further details on our study can
be found in [7, 20].
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